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Parkinson disease (PD) is a chronic, progressive movement disorder and the fastest growing neurological condition

worldwide, affecting over 6million individuals. In 2017, the economic burden of PD in the United States alone reached

$52billion. Gastrointestinal symptoms and dysfunction such as constipation, gastroparesis, and dysphagia are common

in PD, are difficult to manage, and negatively affect quality of life. In addition, constipation often precedes motor

symptoms by decades, perhaps suggesting that a disrupted bidirectionalmicrobiota-gut-brain axis is present early in PD.

Data from mechanistic studies in rodent models and observational human studies demonstrate that gut-microbiota

dysbiosis, intestinal hyperpermeability, and gut inflammation may promote neuroinflammation and a-synuclein
aggregation, inciting loss of dopaminergic neurons. Studies also indicate that the intestinal milieu may influence

symptom severity and response to PD treatments. These findings underscore the potential role of the gut as (i) a site of

early diagnosis and risk stratification for populations at high risk of PD and (ii) a potentially disease-modifying treatment

approach. This review summarizes the current knowledge on the role of the gut-brain axis in PD pathogenesis, clinical

disease course, prodromal gastrointestinal symptoms, and their underlyingmechanisms and stresses current knowledge

gaps and future directions.
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INTRODUCTION
Parkinson disease (PD) is the fastest growing of all neurological
disorders and a leading cause of disability (1), affecting over 6
million people globally (2). One million Americans are currently
diagnosed with PD, and the global impact of PD reaches both
high and low-socioeconomic index countries (3). These data
underscore the urgent need for strategies to address PD pre-
vention, early diagnosis, disease-modifying treatment, and
management.

The onset of motor symptoms, when PD is typically di-
agnosed, is associated with loss of approximately 70%–80% of
nigrostriatal dopaminergic neurons (4). Dopamine-replacement
therapy is the cornerstone treatment for the management of PD
symptoms, but it does not influence disease progression and also
fails to address troublesome nonmotor gastrointestinal (GI) and
other systemic symptoms. Evidence indicates that a disrupted
microbiota-gut-brain axis may be a critical initial biological
process contributing to the pathogenesis of PD and may play
a role throughout the disease even into its late stages. Better
understanding of themechanism bywhich disruptedmicrobiota-
gut-brain axis contributes to PD pathogenesis and disease pro-
gression underlies the search for GI-based biomarkers, especially
for early diagnosis and stratification for PD riskwithin the general

population with the hope of disease prevention or disease-
modifying treatment development.

Longitudinal studies have shown that GI symptoms, including
constipation, can precede motor symptoms by years or even
decades in at least a subset of patients with PD (5–8). This ob-
servation has led to hypotheses that gut dysfunction initiates or
accelerates PD progression through mechanisms such as altered
intestinal permeability, gutmicrobiota dysbiosis, anda-synuclein
misfolding and aggregation within the enteric nervous system.
Variability in symptom presentation, however, indicates that PD
is heterogeneous and that GI symptoms are early manifestations
in some PD phenotypes (gut-first PD) but may also occur only
after motor symptoms develop (brain-first PD). In both instan-
ces, the association of GI and neurological symptoms in PD
suggests a bidirectionality of the gut-brain axis throughout the
disease.

Severe, difficult-to-manage GI symptoms and the potential of
gut-directed therapeutic strategies to modify the disease course
have led neurologists to partner with gastroenterologists in
multidisciplinary clinics and in research endeavors. The aims of
this review article are to understandGI-associated PD risk factors,
to define what is known and unknown about the role of the gut in
PD pathogenesis and onset, to review the prior challenges and
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explore the future potential role of endoscopy in PD screening,
and to discuss the current approach to a GI consult of con-
stipation in the patient with PD.

GI-ASSOCIATED RISK FACTORS AND PATHWAYS IN PD
PD is influenced by a multifaceted interplay of demographic,
genetic, environmental, and systemic factors (Figure 1). Insights
into these factors and their role in PD (and prodromal PD (9))
continue to evolve.

Demographic and genetic risk factors

Age and sex are factors that strongly influence PD risk. Advanced
age is a risk factor inmany diseases, but after the age of 65, there is
a dramatic rise in PD incidence (45). Furthermore, PD is 1.4 times
more frequent in men than women (3). Genetics are important,
and certain populations are associated with high risk (Ashkenazi
Jewish, Spanish Basque, North African Berber) (10). Autosomal
dominant mutations in leucine-rich repeat kinase 2 (LRRK2) and
synuclein alpha, as well as recessive mutations in PARK2, are
implicated in familial PD. Among risk variants, GBA1mutations
aremost prevalent in idiopathic PDworldwide, while LRRK2 (the
G20119S variant) is the second most common and associated
with both familial and sporadic PD (10). Women with autosomal
dominant PD often havemutations in the LRRK2 gene (10,46). In
preclinical and early clinical studies in PD, LRRK2 kinase
inhibitors have demonstrated safety, tolerability, and promise
(47). However, it is important to note that increased PD genetic
susceptibility does not ensure development. This underscores the
complex interplay between genotype, phenotype, and the envi-
ronment and the need for further studies to untangle these
relationships.

Intestinal inflammation and disease

Chronic intestinal inflammation, as seen in inflammatory bowel
disease (IBD), is associatedwith a 20%–90%higher relative risk of
PD, potentially mediated by gut microbiota dysbiosis and dys-
regulated immune activation (48–52). However, in a meta-
analysis of 354,792 patients with IBD, the absolute risk remains
low at approximately 0.26%, (53). Patients with PD have a 15%
lower risk of developing IBD than the general population,
stressing the need for further investigation to distinguish corre-
lation from causation (54). The interplay between intestinal in-
flammation and dysbiosis is complex, and compelling evidence
demonstrates that reducing intestinal inflammation in general
and specifically in IBD mitigates PD risk: (i) Patients with IBD
who take 5-aminosalicylic acid for the treatment of their disease
have a 25% lower risk of PD (55), (ii) azathioprine and cortico-
steroid use also reduces PD risk (56), and (iii) anti-tumor necrosis
factor agents confer a 78% risk reduction for PD (49). Reducing
gut inflammation associated with IBD seems to reduce risk of PD.

GI motility and functional bowel disorders

Constipation, oropharyngeal (transfer) dysphagia, bloating, and
nausea are common in patients with PD. One-third of patients
with PD have at least mild dysphagia that increases in frequency
and severity in the more advanced stages of PD (57,58); 80% of
patients exhibit oropharyngeal delay due to impairment of pha-
ryngealmuscles (57). Dysphagia in PD can also result in excessive
drooling and can be associated with aspiration pneumonia (59).

Nausea occurs in one-quarter of patients with PD, and more
than 70% have delayed gastric emptying (60–62), the latter

complicatingmedicationmanagement such aswith levodopa that
requires predictable, time-sensitive duodenal delivery. In addi-
tion, some data indicate that dopaminergic medications delay
gastric emptying (63).

Irritable bowel syndrome (IBS) is associated with a 45%–50%
increased risk of PD above age 65 (64–67). In a recent study, 4 GI
conditions (dysphagia, gastroparesis, constipation, and IBS) were
found to increase the risk of developing PD in the subsequent
5 years (67). This increased risk is specific to PD over other
neurological conditions, such as Alzheimer disease and cere-
brovascular disease. Delayed gastric emptying (i.e., gastroparesis)
was found to have the highest relative risk of PD compared with
dysphagia, constipation, and IBS. However, it is plausible that at
least a subset of patients with an IBS diagnosis have unrecognized
prodromal PD with GI symptoms.

Diabetes, the gut, and PD

Patients with young-onset diabetes carry a higher risk of early-
onset PD (21–23). Coexisting type 2 diabetes is associated with
severe symptoms, postural instability, gait disturbance, loss of
independence, cognitive impairment, and higher rates of de-
pression in PD (68–70). Diabetes can potentially worsen coex-
isting GI symptoms including constipation, dyssynergic
defecation, and nausea (23).

Management of diabetes with medications lowers PD risk: (i)
Glitazones have a 20% lower risk (24) and dipeptidyl peptidase-4
inhibitors a 50% lower risk (24). Multivariate analysis demon-
strates a 30%–60% risk reduction with dipeptidyl peptidase-4
inhibitors and glucagon-like peptide (GLP-1) agonists, in-
dependent of glycemic control and weight loss. Exenatide, an
injectable GLP-1 agonist, for 48 months improved motor
symptoms in an early-stage, randomized, placebo-controlled PD
trial (71) and also improved nonmotor symptoms (72). However,
a multicenter, placebo-controlled, phase III randomized clinical
trial (RCT) of exenatide in patients with PD without type 2 di-
abetes found no benefit in the primary end point of motor
symptoms or secondary end points, including improvement in
nonmotor symptoms (73).

Metabolic syndrome, characterized by chronic low-grade in-
flammation, may also contribute to PD risk through systemic and
neuroinflammatory pathways. The benefits of GLP-1 agonists
could be multifactorial: neuroprotective against mitochondrial
injury (74), reversal of low-grade inflammation associated with
metabolic syndrome, and reversal of diminished GLP-1 secretion
seen in patients with PD (75). GLP-1 agonists may delay gastric
emptying; however, the anti-inflammatory and neuroprotective
effects of GLP-1 agonists may eclipse their impact on GI motility.
Neuroendocrine cells, key sensory cells in the intestinal epithelial
layer that relay luminal factors (including bacteria products) to
the mucosal immune system and enteric nervous system, also
mediate gut-brain communication through hormones such as
GLP-1 and through the vagus nerve to affect neuroinflammation,
a-synuclein aggregation, and dopamine loss (76). These obser-
vations underscore the need for better understanding of the
complex relationship between metabolic syndrome and PD.
Other factors such as head injury and environmental toxicants are
also associated with increased risk (Figure 1).

MICROBIOTA-GUT-BRAIN AXIS AND PD PATHOGENESIS
PD pathogenesis involves a complex interplay of genetic and
environmental factors. PD is part of a spectrum of Lewy body
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disorders (LBDs) that also include Parkinson disease dementia
and dementia with Lewy bodies (77,78). Incidental Lewy body
disease, often considered a prodromal stage of PD, provides
valuable insights into early pathogenesis through

histopathological findings. Multiple system atrophy, although
associated with a-synuclein pathology, is excluded from LBDs
because of its distinct glial cytoplasmic inclusions rather than
neuronal Lewy bodies (79). This section explores critical

Figure 1. Risk factors of developing Parkinson disease (PD). PD risk is shaped by a complex interplay of factors, including gastrointestinal (GI) conditions
and gut inflammation. PD incidence increases with age with a dramatic rise after 65. PD is 1.4 times more frequent in men than women. Disease-relevant
genetic variants are found in 13.4% of people with Parkinson disease (PwP) in North America. GBA1 mutations are most prevalent genetic variants in
idiopathic PD worldwide, while LRRK2 (the G20119S variant) is the second most common and associated with both familial and sporadic PD (10).
Inflammatory bowel disease (IBD), dysphagia, gastroparesis, constipation, irritable bowel syndrome (IBS), diabetes, and head trauma are all associated
with increased risk of PD. LRRK2 gene mutations also affect the risk of developing Crohn’s disease (e.g., N2081D variant vs N551K variant) (11). Higher
levels of LRRK2 are found in inflamed colonic tissue in Crohn’s disease (12), and LRRK2 is also involved in regulation of gut microbiota and microbe-host
interactions (13). In addition to the overlap of genetic susceptibility between IBD and PD, smoking is a common environmental factor that affects
susceptibility to both diseases and promotes gut inflammation. Smoking has been associated with a reduced risk of PD, potentially because of nicotine’s
anti-inflammatory neuroprotective effects on dopaminergic neurons (14,15). Smokers have a 40% decrease in the risk of PD (16). Smoking has a dose-
dependent relationship with current heavy smokers (greater than 30 pack-year) having the greatest protection (17,18). Declining rates of smoking in the
United States are estimated to contribute to a 10% rise in incidence by 2040 (19). Epidemiological studies have shown smoking to also be protective for the
development of ulcerative colitis (20). By contrast, smoking increases the risk of Crohn’s disease (20). It remains undeterminedwhether smoking affects the
risk of PD in patients with IBD. Patients with diabetes diagnosed at a younger age are at higher risk of early-onset PD (21–23). Antidiabetic medications are
associated with deceased risk of developing PD (24). Head injury as a risk factor of PD gained significant recognition after Muhammad Ali was diagnosed
with early-onset disease at the age of 42 (25). A history of head injury that results in loss of consciousness confers a higher risk of PD (26). Head injury can
trigger neuroinflammation, disruption of the blood-brain barrier, leukocyte infiltration, and microglial activation (27). Head injury can also result in
mitochondrial dysfunction and glutamate excitotoxicity, common features of PD (28–30). Environmental toxins, such as pesticides (paraquat, rotenone)
and industrial solvents (trichloroethylene, perchloroethylene) are associated with increased PD risk (31–36). Paraquat, rotenone, and trichloroethylene
promote oxidative stress, mitochondrial dysfunction, and dopaminergic neuronal loss (37,38). Rotenone was withdrawn from use in the Europe in 2007,
and most of its use in the United States has voluntarily ceased (39). However, paraquat remains the most widely used pesticides in the world. Tri-
chloroethylene, awidely used industrial solvent, was recently linked toPD in theUnitedStatesmarines stationedatCampLejeune inNorthCarolinabetween
1975 and 1985 (40). Manganese concentrations in urban air vary based on location, season, and source (41). During occupational exposure, acute
manganese results in dopaminergic neurotoxicity and parkinsonism (42). Emissions from industrial processes such as ferroalloy production, iron and steel
foundries, and coke ovens are amajor source ofmanganese. If gasoline containsmethycly-clopentadienylmanganese tricarbonyl, manganese can also be
dispersed from gasoline engine combustion (43). Both traffic-related and environmental manganese air pollution confer an increased risk of PD (43,44).
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mechanisms underpinning LBDs, integrating insights and
addressing ongoing controversies.

Evidence from human studies

Two prominent staging models of PD progression exist. The
Braak hypothesis posits that a-synuclein pathology begins in
peripheral sites, such as the nasal cavity or the enteric nervous
system (80,81) and then gradually and linearly spreads to the
brain. The body-first vs brain-first model expands upon this
framework, proposing alternative propagation routes and
allowing for nonlinear spread of pathology, to account for het-
erogeneity in clinical presentations (81). It is estimated that one-
third of patients exhibit an amygdala-centered or brain-first
distribution with pathology in the amygdala, entorhinal cortex,
and substantia nigra originating from the olfactory bulb through
the nose (82). The remaining two-thirds are proposed to exhibit
a body-first phenotype with prominent pathology in the sacral
spinal cord, thoracic interomediolateral column, or dorsal motor
nucleus of vagus, which emanates from the gut (Figure 2)
(8,81,83,84).

In patients with brain-first PD, the central PD pathology
affects the amygdala and central autonomic network to af-
fect gut function and the gut microbiome downstream

(Figure 2). Subsequent progression of PD pathology to the
dorsal motor nucleus of the vagus nerve further augments
gut dysfunction.

In body-first PD, the vagus nerve can promote spread of pa-
thology from the enteric nervous system to the central nervous
system (CNS). A 15% reduction in PD risk is observed during a 5-
year follow-up period after vagotomy supports the vagal route
(85). However, when this cohort was examined 16 years later,
no significant protection from PD was found 20 years after va-
gotomy (86). This later observation was also seen in a Swedish
registry, which also did not observe protection against PD after
vagotomy (87).

Spinal nerve pathways are less appreciated as gut-to-brain
transmission of pathology in body-first patients. Both branches of
the autonomic nervous system, sympathetic and para-
sympathetic, are affected by PD. Interestingly, there are cases of
PD with pathology only in the sympathetic ganglia without
pathological involvement of the vagus nerve or CNS (88,89).
These observations indicate that spinal nerves may also serve as
an alternative route to the vagus nerve for neuron-to-neuron gut-
brain transmission (8,81).

Importantly, there is a bidirectional disruption in communi-
cation in PD, involving both gut-to-brain and brain-to-gut

Figure 2. Neuron-to-neuron pathogenesis: Body-first and brain-first patterns of Lewy body distribution in Parkinson disease. Two-thirds of patients
demonstrate a body-first pattern with more pathology in the sacral spinal cord, thoracic interomediolateral (IML) column, or dorsal motor nucleus of the
vagus (DMV),which emanates from the gut. The remaining one-third of patients exhibit an amygdala-centered or brain-first distributionwithmorepathology
in the amygdala, entorhinal cortex, and substantia nigra that is believed to originate from the nose.
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aberrations that could involve promotion of pathology by non-
neuronal mediators. Gut dysbiosis is a key feature of PD; the
proinflammatory profile in PD is not unique to PD but the PD-
associated microbiota profile is consistently characterized by low
relative abundance of short-chain fatty acid (SCFA)-producing
taxa and increased relative abundance of proinflammatory
pathobionts that can promote neuroinflammation and neuro-
degeneration (90). Several niches of gut microbiota, including
luminal (i.e., stool) andmucosa-associated, are altered in PD (91).
Exact localization of these pathobionts promoting inflammation
is important (91–93). The decreased abundance of SCFA-
producing taxa and associated low SCFA levels may contribute
to disruption of intestinal and blood-brain barrier, promoting
both systemic and neuroinflammation (92–101).

Recent early studies of microbiota-directed interventions are
beginning to demonstrate a causal link betweenmicrobiota dysbiosis
and PD pathogenesis. Beneficial changes in the intestinal micro-
biome and improved intestinal barrier functionwere associatedwith
reduced inflammation and PD symptom improvement (102). An-
other small study found that probiotics (Lactobacillus acidophilus,
Bifidobacterium bifidum, Lactobacillus royi, and Limosilactobacillus
fermentum) positively affected oxidative stress and PD motor
function (103). In an open-label, proof-of-concept study of small
sample size, prebiotic supplementation was associated with im-
proved gut barrier integrity, reduced gut and systemic inflammation,
and improved GI and motor symptoms (102). Several studies have
attempted to improve dysbiosis through fecal microbiota trans-
plantation (FMT). Colonization of patients with PD with non-PD
stool microbiota community improves motor symptoms. Healthy
donor stool administered to patients with early-stage PD (Hoehn
and Yahr stage 2) using a nasojejunal tube improved motor symp-
toms offmedications after 12 months in a single-center RCT (104).
However, FMT of healthy donor stool administered by colonoscopy
failed to improve motor symptoms in patients with mild-to-
moderate PD (Hoehn & Yahr stages 1–3), with bowel cleansing
having potentially confounded this study (105).Orally administered,
lyophilized stool with repeated administration twice weekly for
12 weeks from healthy donors improved diversity of microbiome
and gut transit in patients with mild-to-moderate PD and con-
stipation in a small RCT (106).

Neuromodulation approaches may also be useful. Stimulation of
the abdominal vagal fibers and amygdalar-vagal-glandular circuit
could trigger Brunner glands in the duodenal submucosa to mod-
ulate the intestinal microbiome (107). Vagal nerve stimulation also
activates cholinergic anti-inflammatory pathways (108). High-
frequency transauricular vagal nerve stimulation, which involves
surface electrodes placed near the ear (i.e., cymba concha) to stim-
ulate the auricular branch of the vagus, improves gait and anxiety in
early-phase studies of PD (109–111). Thoracic neuromodulation,
a promising treatment of diabetic gastroparesis that uses repetitive
magnetic stimulation targeting the spinal nerves, may also hold
promise for GI symptoms in PD (112).

In summary, human studies demonstrate a strong link be-
tween gut microbiome dysbiosis and PD progression. Inter-
ventions such as probiotics, prebiotics, and FMT showpromise in
improving PD symptoms by modulating the microbiome. In
addition, neuromodulation offers further therapeutic avenues.

Evidence from animal studies

Multiple rodent microbiota-directed interventional studies sup-
port the microbiota’s role in PD. For example, an a-synuclein

transgenic mouse model of PD that exhibits decreased PD-like
pathology after treatment with antibiotics displays PD pathology
when the mice are colonized with stool from patients with PD
(90). Other studies also show that reduction of the microbial
burden by antibiotics or change in microbiota community with
probiotics or prebiotics influences PD-like outcomes. In addition,
stress associated with microbiota dysbiosis and intestinal barrier
dysfunction promotes parkinsonism induced by the pesticide
rotenone, possibly through a mechanism including increased
systemic and neuroinflammation (99). The parkinsonism asso-
ciated with rotenone can be reversed by colonizing mice with
stool specimens without rotenone exposure (113), consistent with
observations that the microbiota can either potentiate or mitigate
PDat least inpart because of theToll-like receptor 4 receptor (114).
Data from several animal studies also show that modifying the
microbiota by probiotics, prebiotics, or FMT can affect PD-like
outcomes in mouse models (115–117). Taken together, rodent
studies consistently demonstrate that gut microbiota significantly
influences PD-like pathology and PD-like outcomes.

LIMITATIONS OF GI-BASED PD SCREENING
Colonoscopy and endoscopy cannot screen for prodromal or
early PD with sufficient accuracy to be clinically useful. First, the
body-first vs brain-first concept suggestsmany individuals do not
have primary GI disease. Second, although a-synuclein staining
in gastrointestinal biopsies has shown promise to identify early
PD-like pathology (118–120), fundamental issues concerning the
inability of mucosal biopsies to sample enteric neurons, ganglia,
or supporting cellular structures and challenges associated with
distinguishing physiologic vs pathological a-synuclein prevent
standard GI-based evaluations for diagnosing PD or prodromal
PD (121–126). Seed amplification assays may be promising tools
to refine PD staging by detecting pathological a-synuclein in
cerebrospinal fluid, although these techniques are not yet in-
tegrated into standard staging models (127). Future studies to
evaluate the sensitivity/specificity of seed amplification assays of
endoscopically obtained intestinal mucosa samples are required
to determine whether a gut-based biomarker has a promise for
early PD diagnosis and risk stratification.

CURBSIDE CONSULT: THE PD PATIENT
WITH CONSTIPATION
Constipation affects 60%–70% of patients with PD, with more
than a third frequently expressing significant concern about this
symptom (5,8,128). As one of the earliest nonmotor symptoms,
constipation may precede motor symptoms by 20 years with
higher risk of PDdevelopment associatedwith increasing severity
of constipation (6,7,129). However, its high prevalence and
nonspecific nature limit its predictive utility in clinical settings.
Constipation in PD is associated with multiple physiological
abnormalities, including slow colonic transit, a lack of anorectal
coordination (i.e., dyssynergic defecation), and rectal hypo-
sensitivity (130,131). These factors collectively present a chal-
lenging clinical scenario, particularly because management
strategies are often constrained by the absence of robust placebo-
controlled, RCTs. Existing studies assessing mechanism of GI
symptoms/dysfunction in PD are hindered by less than optimal
and accepted enrollment criteria, heterogeneous methodologies,
and inconsistent outcome measures, which may contribute to
mixed results (Table 1) (132–139). For example, RCTs evaluating
probiotics are plagued by use of unvalidated questionnaires (137),
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Table 1. Summary of Randomized Controlled Trials evaluating interventions for constipation in Parkinson disease

Citation Intervention

Constipation

inclusion

criteria Sample size

Outcome

measures Results

Lead-in

period

Study

duration

Adverse

effects

Hatano et al 2024

(135)

Elobixibat Rome IV

criteria

Elobixibat group

n 5 38

Placebo group

n 5 39

# SBMs/wk on stool

diary

Did not meet 1°

end point

DSBMs/wk

Elobixibat: 11.7;

placebo: 10.8

2 wk 4 wk Diarrhea and

abdominal

pain (55.3%)

Camilleri et al

2022 (136)

ENT-01,

squalamine

phosphate

that inhibits

a-synuclein

aggregation

Rome IV

criteria AND

,3 CSBMs/

wk

ENT-01 group

n 5 93

Placebo group

n 5 57

# CSBMs/wk on

stool diary

Met 1° end point

DCSBMs/wk

ENT-01: 12.5;

placebo: 10.5

2 wk 6 wk Nausea

(34.4%);

Diarrhea

(19.4%)

The Parkinson’s

study group 2017

(134)

Relamorelin Rome III

criteria AND

less than 3

bowel

movements

per wk

Did not meet

recruitment goal

of 56

Relamorelin sc

inj daily n 5 10

Placebo n 5 18

# SBMs/wk on stool

diary

Did not meet 1°

end point

DSBMs/wk

Relamorelin:

10.2

Placebo: 10.1

2 wk 2 wk Headache

(20%)

Ibrahim et al 2020

(137)

Multistrain

probiotic

(Hexbio)

Rome III

criteria

Probiotic group

n 5 22

Placebo group

n 5 26

Garrigues

questionnaire

Met 1° end point

Mean weekly

bowel opening

frequency

Probiotic: 12.11

Placebo: 10.85

2 wk 8 wk Bloating,

dizziness

(14.8%)

Tan et al 2021

(138)

Multistrain

probiotic

Rome IV

criteria AND

, 3 CSBMs/

wk

Probiotic group

n 5 34

Placebo group

n 5 38

# SBMs/wk on stool

diary

Met 1° end point

DSBMs/wk

during last 2 wk

Probiotic: 11.0

Placebo: 0.3

2 wk 4 wk Lethargy

(2.9%)

Du et al 2022

(139)

Multistrain

probiotic

Rome III

criteria

Probiotic group

n 5 34

Placebo group

n 5 38

# CSBMs/wk based

on patient recall

during clinical

evaluation

Met 1° end point

DSBMs/wk

during last 2 wk

Probiotic: 11.09

Placebo: 10.04

2 wk 12 wk Lethargy

(2.9%)

Zangaglia et al

2007 (132)

Isosmotic

Macrogol

Electrolyte

Solution

(MC-ES)

Rome II criteria MC-ES n-29

Placebo n 5 28

Responder rate

Responder 5

.marked

improvement of

predominant

symptom AND at

least one other

Rome II criteria

Met 1° end point

Responder rate

MC-ES: 80.0%

Placebo: 30.4%

Length not

reported

8 wk Nausea,

diarrhea

(6.9%)

Ondo et al 2012

(133)

Lubiprostone Rome II criteria

AND

constipation

rating Scale

.10

Lubiprostone

n 5 27

Placebo n 5 27

% Marked or very

marked clinical

global

improvement

Met 1° end point

.Marked clinical

global

improvement

Lubiprostone:

64%

Placebo: 18.5%

2 wk 4 wk Loose stools

(48%)

CSBMs, complete spontaneous bowel movements; inj, injection; SBMs, spontaneous bowel movements; sc, subcutaneous.
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suboptimal end points such as number of spontaneous bowel
movements instead of complete spontaneous bowel movements
per week (138), or flawed by recall bias (139). Small intestinal
bacterial overgrowth (SIBO), defined by hydrogen breath tests
and associated clinical symptoms of bloating and abdominal
discomfort, has a high prevalence in PD; however, studies de-
fining SIBO prevalence using the gold standard of jejunal aspi-
rates are lacking (140–144). SIBO in PD is often characterized by
frequent relapses after treatment, necessitating a comprehensive,
multifaceted management approach. The bacterial composition
of SIBO in PD also may mirror PD dysbiotic microbiota with
increased abundance of Lactobacillus and Enterococcus fecalis.
These bacteria contain the enzyme tyrosine decarboxylase, which
can metabolize levodopa to dopamine, compromising its ab-
sorption from the intestine (145). Dopamine, unlike levodopa,
cannot pass through the blood-brain barrier, and therefore, do-
pamine decarboxylase inhibitors such as carbidopa are coad-
ministered with levodopa to optimize absorption. However,
dopamine decarboxylase inhibitors are unable to inhibit bacterial
tyrosine decarboxylase. In addition to improvement of abdomi-
nal symptoms, effective treatment of SIBO may reduce bacterial
abundance and also improve levodopa CNS delivery. Further-
more, the use of Lactobacillus probiotics should be cautioned in
the absence of supporting data from robust RCTs showing any
beneficial effects on PD disease course. Other agents, including
those outlined in society guidelines for chronic idiopathic con-
stipation or IBS with constipation, may be considered in clinical
practice (146,147). For patients with coexisting upper GI symp-
toms, such as nausea, prucalopride, a serotoninergic, panenteric,
promotility agent, may provide added benefit for foregut symp-
toms. Importantly, metoclopramide, a dopamine antagonist with
promotility properties, is contraindicated in PD because of its
potential to exacerbate motor symptoms (143). In cases where
abdominal pain and bloating predominate, secretagogues, such as
linaclotide and plecanatide, or the sodium/hydrogen exchanger
inhibitor tenapanor may be effective (148–151). Elderly and frail
patients with PD need special attention, because coexisting fecal
incontinence may complicate the clinical picture and require
tailored interventions (152,153). Dyssynergic defecation, present
in 90% of PD constipation, calls for specialized management
(130,154). Expertise in biofeedback or pelvic floor physical
therapy should be sought. Although these interventions have
been studied for urinary symptoms in PD, they remain unin-
vestigated in this cohort (155). Apersonalized, symptom-directed
approach that considers the full spectrum of GI dysfunction is
critical in optimizing the management of constipation in PD and
can be achieved by coordinating care between neurologists and
gastroenterologists.
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