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Abstract
Although large-scale genetic association studies have proven useful for the delineation of
neurodegenerative disease processes, we still lack a full understanding of the pathologic
mechanisms of these diseases, resulting in few appropriate treatment options and diagnostic
challenges. To mitigate these gaps, the Neurodegenerative Disease Knowledge Portal (NDKP)
was created as an open-science initiative with the aim to aggregate, enable analysis, and display
all available genomic datasets of neurodegenerative disease, while protecting the integrity and
confidentiality of the underlying datasets. The portal contains 218 genomic datasets, including
genotyping and sequencing studies, of individuals across 10 different phenotypic groups, in-
cluding neurologic conditions such as Alzheimer disease, amyotrophic lateral sclerosis, Lewy
body dementia, and Parkinson disease. In addition to securely hosting large genomic datasets,
the NDKP provides accessible workflows and tools to effectively use the datasets and assist in
the facilitation of customized genomic analyses. Here, we summarize the genomic datasets
currently included within the portal, the bioinformatics processing of the datasets, and the
variety of phenotypes captured. We also present example use cases of the various user interfaces
and integrated analytic tools to demonstrate their extensive utility in enabling the extraction of
high-quality results at the source, for both genomics experts and those in other disciplines.
Overall, the NDKP promotes open science and collaboration, maximizing the potential for
discovery from the large-scale datasets researchers and consortia are expending immense
resources to produce and resulting in reproducible conclusions to improve diagnostic and
therapeutic care for patients with neurodegenerative disease.

Introduction
Neurodegenerative diseases are clinically heterogeneous and complex disorders. Given their
relatively high estimates of heritability,1-4 large-scale association studies are particularly useful
for gaining a greater understanding of the pathologic mechanisms driving neurodegenerative
disease processes, as demonstrated by their discoveries across neurodegenerative conditions
including in Alzheimer disease, amyotrophic lateral sclerosis (ALS), and Parkinson disease.5-12

Yet, there are still few appropriate treatment options across these diseases, and diagnoses
remain a challenge, as a direct result of a lack of full understanding regarding their neuro-
pathologic mechanisms.13-16 To mitigate these gaps, greater effort must be made to combine
resources in the pursuit of novel discovery in neurodegenerative disease genetics.
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The application of open science and data-sharing principles in
the pursuit of neurodegenerative disease research motivated
the deployment of the Neurodegenerative Disease Knowl-
edge Portal (NDKP),17 consisting of 218 open-access geno-
mic summary statistics and variant datasets of individuals
across 10 different phenotypic groups, including neurologic
conditions such as Alzheimer disease, ALS, Lewy body de-
mentia, and Parkinson disease (all sample sizes were obtained
in December 2023; annual updates to the NDKP are antici-
pated). In this study, we further describe the online, open-
access resource including details of the available data and
applications for genetic discovery and result replication in the
study of neurodegenerative diseases.

Overview of the Neurodegenerative
Disease Knowledge Portal
To maximize the potential for discovery from the many large,
novel datasets being leveraged for various neurodegenerative
disease genetic association studies and in taking inspiration
from the successes of the previously deployed Type 2 Di-
abetes Knowledge Portal,18 a centralized repository was as-
sembled to securely store these datasets and make their
summary results widely available to the research community.
The portal was created and deployed by the developers at the
Broad Institute of MIT and Harvard in collaboration with the
Montreal Neurological Institute-Hospital, the Global Par-
kinson’s Genetics Program (GP2), and NIH Intramural
Center for Alzheimer’s and Related Dementias into what is
now known as the NDKP.

Overall, the aim of the NDKP is to aggregate, enable analysis,
and display all available genomic datasets of neurodegenera-
tive disease, while protecting the integrity and confidentiality
of the underlying datasets. The NDKP is available to the
broad scientific community studying neurodegeneration
seeking to unveil novel genetic associations or validate pri-
mary findings from other approaches.

Available Datasets
Although the goal of the NDKP is to expand our genomic
understanding of neurodegenerative diseases, the portal in-
cludes genomic datasets from cohorts spanning 10 phenotypic
groups, including (1) cerebrovascular MRI traits, (2) COVID-
19, (3) immunologic, (4) metabolite, (5) musculoskeletal, (6)
neurologic, (7) psychiatric, (8) sleep and circadian, (9) stroke,

and (10) cognitive. Across these groups, 239 subphenotypes
are captured (eTable 1). It is important to note that this allows
for the cross-analysis of neurodegenerative diseases with pos-
sible related and overlapping features. For example, given the
known association between cerebrovascular disease features
and neurodegeneration risk,19-22 the NDKP can be used to
identify genes or variants relevant in both a neurologic phe-
notype such as Alzheimer disease and a cerebrovascular MRI
feature such as brain microbleeds, as will be discussed further.
In total, 218 genomic datasets are currently captured within the
NDKP (Figure 1), which can be subdivided into 2 data types:
(1) genotyping studies and (2) sequencing studies (Figure 2).

Genotyping Studies
The genotyping-based studies within the NDKP largely en-
compass genome-wide association studies (GWASs), which use
genotyping microarray data and are aimed at identifying asso-
ciations between variants and traits or disease states. GWASs
require large sample pools of both individuals with a phenotype
of interest and nonaffected controls and, depending on the type
of quantitative trait, can generate an effect size per variant.23 The
NDKP includes datasets from 206 GWASs performed between
2010 and 2023, with the largest neurodegenerative disease
dataset having been part of the 2023 GP2 GWAS that included
1,028,993 samples across multiple ancestries24 (Figure 2).
Summary statistics from many of the GWASs, which include
the aforementioned effect sizes per statistically significant,
phenotype-associated variant, are directly downloadable from
the NDKP on the “Data Downloads” page.

In addition to the case-control variant calls and summary
statistics, additional data types have been generated for the
NDKP from the GWAS analyses. “Credible sets” include sets
of variants near significant genetic association signals that are
likely to include the causal variant for the signals and are
generated through fine mapping of the GWAS results to
further investigate genetic association signals. In addition,
“effector gene lists” encompass lists of variant-adjacent genes
potentially mediating the effects of the significantly
phenotype-associated variants identified within the GWAS.
Although the methods by which these genes are defined are
study-dependent, their inclusion in the NDKP is important as
stepping stones for experiments to further define the genes
that may be truly causal for a particular phenotype.

Finally, the NDKP also has 2 datasets from the immunologic
phenotype group that encompass ImmunoChip (iChip) data.
The iChip is a custom-designed Illumina Infinium microarray

Glossary
ALS = amyotrophic lateral sclerosis;CMDGA = CommonMetabolic Diseases Genome Atlas;GEM = Genomic RegionMiner;
GP2 = Global Parkinson’s Genetics Program;GWASs = genome-wide association studies;HuGE = Human Genetic Evidence;
iChip = ImmunoChip; LDSC = Linkage Disequilibrium Score Regression; NDKP = Neurodegenerative Disease Knowledge
Portal; NGS = next-generation sequencing.
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that includes a specific set of single nucleotide variants and
small insertion-deletions that were previously associated with
autoimmune and inflammatory diseases through GWASs.25 It
provides the added benefit of being more cost-effective than
typical exome-wide or genome-wide microarrays.

Sequencing Studies
Sequencing studies include the data fromwhole-genome, exome,
or smaller panel-based next-generation sequencing (NGS)
analyses. Typically, these studies include sequences from both
affected (individuals with the phenotype of interest) and
unaffected individuals because the data are used to perform
variant-binned association analyses, such as rare variant bur-
den association analysis. Generally, these approaches collapse
rare variants into groups that can be dictated by a variety of
factors, including, but not limited to, general genomic region,
individual genes, pathways of interest, minor allele frequency,
or functional consequence.26 Various methods can be used to
identify associations between the rare variant groups and the
phenotype of interest, such as univariate or multivariate re-
gression models. It is important to note that sequencing data
allows for not only analysis of variant-level associations but
also assessment of gene-level and region-level associations,
using variants called from the complete sequencing of all loci
within a given region of the genome.

Currently, the NDKP includes the data from 10 sequencing
studies, including 7 whole-genome and 3 exome datasets
(Figure 2). As NGS becomes more cost-effective, we expect
larger and more ethnically diverse sequencing datasets to be
made available and included in Knowledge Portal initiatives.

Neurologic Datasets
The NDKP includes 33 datasets within the neurologic phe-
notype subgroup, including 32 GWAS datasets and one exome
sequencing dataset (Table 1). These neurologic phenotype

datasets span 8 subphenotypes including Alzheimer disease
(general and late-onset), ALS, Parkinson disease, epilepsy, and
Lewy body dementia. While 26 of the datasets are of European
ancestry, one dataset has individuals of African ancestry, an-
other has individuals of Hispanic ancestry, and 5 datasets
represent multiancestry analyses. In the coming years, it is a
priority for the NDKP to continue expanding the ancestral
diversity of the available datasets.

Multiomic Datasets
In addition to the genomic datasets available through the
NDKP, multiomic data from the CommonMetabolic Diseases
Genome Atlas (CMDGA) are integrated through the various
search pages and tools provided by the portal.18 In brief, the
CMDGA provides a compendium of epigenomic and other
functional genomic data collated from the Accelerating Medi-
cines Partnership Common Metabolic Disorders consortium,
publicly available sources, and large resources such as ChIP-
Atlas and the Encyclopedia of DNA Elements. In total, there
are 6,890 multiomic datasets encompassed within the NDKP
that were produced using a wide variety of methods including,
but not limited to, ATAC-Seq, CaptureC, ChIP-Seq, HiC, and
RNA-Seq. Of these, 378 datasets are derived from tissues rel-
evant to the central nervous system. It is important to note that
these datasets allow for the annotation of variants captured
within the NDKP based on whether they are encompassed by
regions considered accessible chromatin, binding sites, candi-
date regulatory elements, chromatin state, gene expression,
histone modifications, or target variant predictions.

Bioinformatics Processing of the Data
On intake, genetic and genomic datasets are subjected to a
suite of bioinformatic methods to glean additional insights
from the processed and integrated results. Incoming genetic
association datasets are first subjected to quality control and

Figure 1 Genomic Association Datasets Captured by the Neurodegenerative Disease Knowledge Portal (NDKP) From
Various Phenotypic Groups

The NDKP comprises genomic datasets from cohorts spanning 9 phenotypic groups, including cerebrovascular MRI traits, COVID-19, immunologic, me-
tabolite, musculoskeletal, neurologic, psychiatric, sleep and circadian, and stroke. Datasets include genotyping data, such as genome-wide association
studies (GWASs) and ImmunoChip (iChip), and sequencing studies, such as whole-genome sequencing (WGS) and exome sequencing.
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harmonization, including ensuring that standardized column
headings are used, inferring missing data for nonoptional
columns (e.g., odds ratios can be used to infer effect sizes),

and lifting over all datasets to GRCh37.We also ensure that all
effect sizes are in reference to the alternate allele of GRCh37,
remove variants with incompatible summary statistics for the

Figure 2 Year of Publication and Sample Size of the 218Genomic AssociationDatasets Capturedby theNeurodegenerative
Disease Knowledge Portal (NDKP) From Various Phenotypic Groups

Datasets include genotyping data, such as ge-
nome-wide association studies (GWASs) and
ImmunoChip (iChip), and sequencing studies, such
as whole-genome sequencing (WGS) and exome
sequencing. For one study that provided prepub-
lished data with no given date of publication, the
year of publication 2023 was used. Samples per
dataset are presented on a log10 scale.
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Table 1 Neurologic Datasets Included in the Neurodegenerative Disease Knowledge Portal (NDKP)

Dataset Publication year Cases (n) Controls (n) Ancestry Data type

Alzheimer disease GWAS 2019 71,880 383,378 European GWAS

Alzheimer disease GWAS 2021 75,024 397,844 European GWAS

Alzheimer disease GWAS 2022 85,934 401,577 European GWAS

Alzheimer disease GWAS 2023 101,061 543,127 Multi GWAS

Alzheimer disease family history GWAS 2018 314,278 N/Aa European GWAS

Amyotrophic lateral sclerosis exome case-control 2019 3,864 7,839 European Exome

Amyotrophic lateral sclerosis GWAS 2016 12,577 23,475 European GWAS

Amyotrophic lateral sclerosis GWAS 2017 13,811 26,325 Multi GWAS

Amyotrophic lateral sclerosis GWAS 2018 20,806 59,804 European GWAS

Amyotrophic lateral sclerosis GWAS 2020 22,040 62,654 Multi GWAS

Amyotrophic lateral sclerosis GWAS 2021 29,612 122,656 Multi GWAS

Amyotrophic lateral sclerosis GWAS 2021 27,205 110,881 European GWAS

Carpal tunnel syndrome GWAS 2019 12,312 389,334 European GWAS

Cognitive function GWAS 2016 112,067 N/A European GWAS

FinnGen r8 complex disease GWAS (Alzheimer disease) 2023 7,129 760,059 European GWAS

Global Parkinson’s Genetics Program GWAS 2023 62,976 966,017 Multi GWAS

GR@CE Alzheimer’s GWAS 2019 4,120 3,289 European GWAS

Handedness GWAS 2020 1,470,460 N/A European GWAS

International League Against Epilepsy GWAS 2018 225 24,218 European GWAS

IPDGC Parkinson’s Disease GWAS (female) 2021 7,384 12,389 European GWAS

IPDGC Parkinson’s Disease GWAS (male) 2021 12,054 11,999 European GWAS

IPDGC-UK Biobank Parkinson’s disease and proxy cases GWAS
(female)

2021 13,420 90,662 European GWAS

IPDGC-UK Biobank Parkinson’s disease and proxy cases
GWAS (male)

2021 20,956 89,660 European GWAS

IPDGC-UK Biobank Parkinson’s disease GWAS (female) 2021 7,947 90,662 European GWAS

IPDGC-UK Biobank Parkinson’s disease GWAS (male) 2021 13,020 89,660 European GWAS

LARGE-PD Parkinson’s disease GWAS 2021 807 690 Hispanic/Latin American GWAS

Late-onset Alzheimer GWAS 2013 8,572 11,312 European GWAS

Late-onset Alzheimer GWAS 2019 21,982 41,944 European GWAS

Lewy body dementia GWAS 2021 2,981 4,391 European GWAS

Parkinson disease GWAS 2019 56,306 426,424 European GWAS

Parkinson disease GWAS 2023 1,200 2,445 African GWAS

Parkinson disease progression GWAS 2019 4,093 N/A European GWAS

Parkinson disease progression GWAS 2020 2,848 N/A European GWAS

Abbreviations: GR@CE = Genome Research at Fundacio ACE; GWAS = genome-wide association study; N/A = not applicable.
Further details regarding the neurologic datasets captured by the Neurodegenerative Disease Knowledge Portal can be accessed online at ndkp.hugeamp.
org/datasets.html.
a 25,696 individuals had a maternal family history of Alzheimer disease, and 14,338 individuals had a paternal family history of Alzheimer disease.
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subsequent analyses, and perform a linear regression–based
effect size scaling for all quantitative phenotypes.18 Variant
associations are then meta-analyzed, using the METAL algo-
rithm that infers and accounts for sample overlap between
datasets to calculate an integrated “bottom-line” association for
each variant and each trait.27 The bottom-line analysis can both
identify novel associations that are not significant at the level of
individual datasets but become significant when multiple
studies are considered and identify artifactual associations that
may be significant in one dataset but are not replicated in others
using a fixed-effect method. Using these bottom-line associa-
tions, we run the Variant Effect Predictor28 to annotate pre-
dicted variant impact and perform LD clumping using the
PLINK method29 to group variants into genetically linked sets.
We use the MAGMA algorithm per gene,30 to calculate gene-
level association scores based on nearby common variant as-
sociations, and per trait, to generate lists of biological pathways
whose constituent genes are enriched for genetic associations
for that trait. We apply the LD score regression method
(LDSC) in 2 calculations.31,32 Cross-trait LDSC is used to
calculate the genetic correlations between all traits while
stratified LDSC provides a measure of the enrichment of ge-
netic association signals for each trait within annotated geno-
mic regions such as enhancers and promoters. Finally, we apply
the Human Genetic Evidence (HuGE) Calculator across all
associations to categorize the weight of evidence supporting the
relevance of each gene to each trait.33 These methods are
documented in the “Help” pages of the NDKP and were also
described previously in detail.18

Application for the Study
of Neurodegeneration
In addition to securely hosting large genomic datasets, one of
the founding aims of the NDKP is to provide accessible
workflows and tools to effectively use the datasets and assist in
the facilitation of customized genomic analyses. To allow
users to perform these aims, the portal offers 4 core page
types, including regional pages, gene pages, variant pages, and
phenotype pages, in addition to a variety of tools to allow for
more structured analyses. Across these pages and tools, users
are provided with summary results derived from the genomic
datasets to explore genes, genomic regions, variants, or phe-
notypes of interest (Figure 3).

Exploring Genes/Regions of Interest
Commonly, researchers from disciplines outside the realm of
computational or statistical genomics identify genes or re-
gions of the genome of interest from experimental study, such
as comparative functional genomic analyses with model or-
ganisms, protein-protein interaction analyses, or expression
quantitative trait loci analyses.34,35 After such studies, re-
searchers may wish to further explore whether human genetic
and genomic results support the hypotheses generated by
experimentation. However, it has often been difficult for these
research groups to gain access to the necessary large-scale
genotyping or sequencing datasets to explore these results.
Furthermore, even if data were freely available, these re-
searchers may have lacked the expertise to efficiently or

Figure 3 Potential Uses of the Data and Tools Encompassed Within the Neurodegenerative Disease Knowledge Portal
(NDKP)

TheNDKP aims to provide accessible workflows and tools to use the datasets and assist in the facilitation of customized genomic analyses. The portal offers 4
core search pages and a variety of tools to provide summary results derived from the genomic datasets to explore genes, genomic regions, variants, or
phenotypes of interest.

Neurology: Genetics | Volume 11, Number 2 | April 2025 Neurology.org/NG
e200246(6)

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.n
eu

ro
lo

gy
.o

rg
 b

y 
3.

12
9.

23
9.

96
 o

n 
8 

A
ug

us
t 2

02
5

http://neurology.org/ng


accurately pull the required summary-level results to sub-
stantiate their hypotheses. The NDKP has aimed to fill this
gap, providing a variety of results that may be of interest both
to the genetics community and to researchers outside the
discipline to explore regions of the genome and specific genes
that may represent new risk loci or therapeutic targets for
specific neurodegenerative phenotypes (Figure 3).

After the search of a gene of interest, the NDKP returns a
variety of gene-level and variant-level association summary
results. At the gene level, the search returns both common
variant and rare variant gene-wide trait associations. More
specifically, these results represent phenotypes for which a
genetic association exists with the genes when common or rare
variants, respectively, are binned and the burden of variants
within the gene are compared between a cohort of individuals
with the phenotype and a control cohort that does not have the
phenotype. The NDKP also returns HuGE Calculator trait
scores for the gene, which represent the extent of human ge-
netic evidence captured within the Knowledge Portals that
supports gene-phenotype associations.33 For example, the well-
established ALS-associated gene, SOD1, has a calculated HuGE
score of 350, representing a “compelling” level of evidence for
involvement of the gene in ALS, whereas the gene LDLR,
which is traditionally associated with familial hypercholester-
olemia and has no known associations with ALS, has a calcu-
lated HuGE score of 1.33, representing “anecdotal” evidence.

In addition to gene-level summary results, the search of a gene
in the NDKP will also return variant-level summaries, in-
cluding a list of variants within the gene that have individual

associations with any of the phenotypes captured across the
various datasets. Similarly, the search of a region of interest
will return individual variant-level trait associations that have
been identified across the NDKP datasets within the given
region. The search of a region of interest will also return the
Genomic Region Miner (GEM) LocusZoom tool, which vi-
sualizes variant associations with single or multiple traits.
Figure 4 displays the results of searching for the region sur-
rounding a well-known Parkinson disease gene, SNCA (chr 4:
90,571,496-90,809,466). Using the GEM LocusZoom tool,
not only can the variants with significant Parkinson disease
associations be visualized, but also if other trait associations
are suspected in the region, as is the case for Lewy body
dementia in this region, additional phenotypes can be queried.
A table of the variant-level data captured by the GEM
LocusZoom tool is also provided by the NDKP.

In addition to the genetic association summary results com-
puted and returned by the NDKP, a variety of gene annota-
tions can be found from the search of a given gene or region.
The search of a gene of interest returns functional associations
of the gene, tissue-specific gene expression data, effector gene
lists, UniProt cross-reference data, and external resource links
as applicable. By contrast, the search of a region of interest
returns a list of genes encompassed by the region.

Exploring Variants of Interest
Variants of interest, such as those identified through GWAS
analysis or other association studies, can also be further ex-
plored using the NDKP. The search of a variant using the
dbSNP identifier will return both variant annotations and

Figure 4 Genomic Region Miner (GEM) LocusZoom Visualization of Variant-Phenotype Associations Within the Region
Surrounding SNCA (chr 4:90,571,496-90,809,466)

As part of the summary results returned when a region of interest is searched in the Neurodegenerative Disease Knowledge Portal (NDKP), the
GEM LocusZoom tool provides a visualization of all variants within that region identified across the NDKP datasets and their individual associations with the
most relevant phenotype. In the case of the region surrounding SNCA, Parkinsondisease represents themost highly associated phenotype. However, theGEM
LocusZoom tool also allows for customized visualization of variant associations with additional phenotypes, as is shown here for Lewy body dementia.
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phenotype associations based on the datasets encompassed in
the portal (Figure 3). More specifically, the variant search
page will return information regarding the closest gene to the
variant or the gene it resides within, as applicable, and any
predicted variant consequences. The search page also returns
results of a phenotype-wide association study, providing the
statistical results that describe the level of associations of the
variant with any given phenotype captured by the NDKP. For
example, when a search of the NDKP is performed for the
APOE e4 defining variant, rs429358, an unsurprising signifi-
cant association is observed between the variant and an in-
creased risk of late-onset Alzheimer disease (OR = 3.49, p =
4.94e-324); however, the variant is also found to be signifi-
cantly associated with an increased risk of brain microbleeds
(OR = 1.29, p = 7.48e-10). It is important to note that in-
dividual datasets can also be specifically queried for variants of
interest, which can provide interesting sources of evidence for
ancestry-specific analyses or variant curation exercises.36

Exploring Phenotypes of Interest
Unlike the abovementioned examples that are often driven by
experimentally derived hypotheses, a researcher may also have
a phenotype or disease of particular interest for which they
want to develop novel human genomic-derived hypotheses.
For these instances, the NDKP provides phenotype search
page result summaries in addition to specific tools that allow
for the exploration of genetic associations (Figure 3).

When only a single phenotype is of interest, the phenotype
search page provides the greatest amount of information to
the user, including both variant-level and gene-level result
summaries. All datasets for which the phenotype of interest is
captured are clearly outlined. At the variant level, the phe-
notype search page provides the top genome-wide single-
variant associations, and at the gene level, associations based
on the binning of common variants within each potential gene
are provided. The search also provides top gene pathway
associations, cell/tissue-specific genetic correlations, and ef-
fector gene predictions for the phenotype, as applicable.

Using ALS as a case study, the user will find 7 datasets that
capture the ALS phenotype, each of which can be further
explored. As anticipated, the top single-variant association
signal for ALS is an intronic variant (rs2453555) within
C9orf72 (OR = 1.19, p = 1.78e-41), which tags a hex-
anucleotide repeat expansion known to be one of the most
common genetic causes of ALS.37-40 Similarly, C9orf72 (p =
3.04e-20, variants = 24) is the gene with the second highest
common variant gene-level association, after MOB3B (p =
6.53e-29, variants = 95), a gene located nearby C9orf72. The
NDKP also indicates that ALS is significantly associated with
the acanthocytosis pathway (p = 3.22e-7)—an example of a
potential novel association that may prompt hypothesis
generation—and ALS genetic associations are significantly
enriched within regions annotated as enhancers in CNS tis-
sues (p = 7.07e-5). In addition to the results captured by the
phenotype search pages, the NDKP also assists with single-

trait analysis through the use of the HuGE Calculator that
computes HuGE scores for any given phenotype-gene com-
bination, which are described further above.33

Of additional utility, the NDKP offers summary results and
tools that allow for effective multitrait analysis. Directly within
the phenotype search page, a list of genetically correlated
traits for the phenotype of interest can be found. Using Alz-
heimer disease as a case study, it is unsurprising to find a
significant genetic correlation with late-onset Alzheimer dis-
ease (r = 0.90, p = 1.22e-70); however, there is also a signif-
icant genetic correlation observed with Parkinson disease (r =
0.26, p = 7.80e-8).

The NDKP also hosts 3 tools that allow for more detailed
multitrait analysis: (1) the Signal Sifter, (2) the Gene Sifter,
and (3) the Variant Sifter. The Signal Sifter and Gene Sifter
tools work in a similar manner, such that multiple traits can be
queried and genetic associations relevant to 2 or more phe-
notypes will be returned, but the Signal Sifter returns regions
with LD-clumped variants while the Gene Sifter returns
genes. Often, the user will explore genetic correlations by
beginning with multiple phenotypes that they know, or sus-
pect, are clinically correlated. It is important to note that the
integration of these tools directly within the framework of the
NDKP affords researchers the ability to explore the genetic
underpinnings of common comorbidities across the neuro-
degenerative disease spectrum.

Again, using Alzheimer disease as a primary phenotype, the user
may wish to explore its genetic correlations with brain micro-
bleeds based on observations of neurovascular damage in cases
of neurodegenerative disease.41-43 Indeed, on investigation of
these 2 phenotypes with the NDKP, the Signal Sifter returns
regions of LD-clumped variants significantly associated with
increased risk of both traits, including the top associated region
chr 19:45,387,459-45,428,235 (Alzheimer-associated variant
rs11556505, p = 4.94e-324; brain microbleed–associated variant
rs769449, p = 2.52e-10) (Figure 5A). Similarly, the Gene Sifter
returns 138 genes with significant chi-square p values that rep-
resent a measure of overall association for the gene and both
traits (Figure 5B). The top 3 of these associated genes are
TOMM40 (p[X2] = 1.14e-141), PVRL2 (p[X2] = 7.40e-137),
and APOE (p[X2] = 2.68e-102), expectedly, all of which are
captured in the top region identified with the Signal Sifter and
have been previously associated with the 2 phenotypes
independently.10,44-48

The Variant Sifter is the Knowledge Portal’s most recently
developed tool and encompasses a wide range of capabilities,
broadly allowing the user to explore variant-phenotype asso-
ciations based on a range of filter options including focusing
on credible sets and tissue-specific epigenomic annotations.
Although there are many ways to use the tool, the user typi-
cally will begin with a phenotype and a region or gene of
interest. The Variant Sifter returns a list of variants in the
region that are associated with the phenotype that can then be
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filtered based on user-defined criteria. The filters allow for the
identification of variants in credible sets; variants within tissue-
specific regulatory region annotations of interest, integrated
from the CMDGA; and variants linked to specific genes.

Recently, a novel ALS-associated gene, KANK1, was discov-
ered using a rare variant association analysis approach, which
identified not only an enrichment of rare variants in coding
regions of the gene in individuals with ALS but also rare
variants in noncoding enhancer and promoter regions.7 The
NDKP Variant Sifter can be used to determine whether any
individual variants within the surrounding regulatory regions
of KANK1 demonstrate a significant association with ALS,
which may be important for further functional analyses re-
garding this gene’s association. After the search of the chr9:

370,291–846,105 region using the Variant Sifter tool re-
garding the ALS phenotype, the tool returns all variants
reported within the NDKP in an association plot (Figure 6A).
The variants can then be filtered based on a variety of anno-
tations of interest to the researcher, such as identifying vari-
ants by location within regulatory regions annotated in broad
tissue categories based on the epigenomic data derived from
the CMDGA. In this case, we were interested in identifying
variants within an enhancer regulatory element in the CNS
linked to KANK1. We first filtered for variants located within
enhancer regions and specified to only include those identi-
fied in tissues of the CNS (Figure 6B). The Variant Sifter then
provides a filter to identify variants linked to genes, using
which we specified to only include variants linked to KANK1
(Figure 6C). Using this filtration strategy that leveraged the

Figure 5 Multitrait Analysis Using Tools Integrated Into the Neurodegenerative Disease Knowledge Portal (NDKP), Which
Demonstrated Genomic Associations With Alzheimer Disease and Brain Microbleeds

(A) Signal Sifter identified regions of LD-clumped variants significantly associated with risk of both traits. (B) Gene Sifter identified 138 genes with a significant
chi-square p value, indicating overall associations between the genes and both traits.
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epigenomic data derived from the CMDGA, the Variant Sifter
tool returned 79 variants, including one variant (chr9:
504,491:A>C) demonstrating an association with ALS based
on the meta-analysis of NDKP data that is approaching sig-
nificance (β = 0.238, p = 7.01e-4; Figure 6D).

Discussion
As researchers and consortia continue to expend immense
effort and resources in producing large-scale genomic analy-
ses, it is essential that the greatest potential for discovery is
realized from these datasets. The NDKP offers a centralized
knowledge base for researchers that can act as a secure, ac-
cessible, and innovative solution for data sharing, not only
achieving aims of transparency when reporting novel results
but also allowing for continued discovery in neurodegenera-
tive disease research. In contrast to disease-agnostic resources
that aggregate large-scale genomic datasets, such as Open
Targets49 or the GWAS Catalog,50 the NDKP focuses the
presented results on traits most relevant to neurodegenerative
phenotypes and benefits from the careful curation provided
by neurogenetic experts to ensure that all analyses of high
impact are incorporated appropriately and displayed in ways
most useful to the end user. Yet, unlike highly disease-specific

“omic” resources, such as the Alzheimer’s Disease Variant
Portal51 or Agora,52 the NDKP still allows for the assessment
of comorbidities across the neurodegenerative spectrum,
which is particularly important based on the large amount of
clinical overlap between these conditions. Furthermore, the
various user interfaces and analytic tools are custom-designed
for the purposes of the Knowledge Portals and enable con-
sistent extraction of high-quality results at the source, for both
genomics experts and those in other disciplines, while still
protecting the integrity of the data.

In addition to its potential for discovery, the NDKP provides a
centralized hub allowing the user to replicate or further in-
vestigate findings from their own independent datasets. The
generation of “omics” datasets can be cost prohibitive, partic-
ularly considering the need for both discovery and replication
subsets53; by offering a secondary dataset for replication of
novel discoveries, researchers can maximize the statistical
power harnessed from their in-house data. In addition, the
breadth of data types and tools available through the portal
offer the ability to further explore their findings beyond only
replication of results. Our goal is to continue to add available
datasets to the portal. Regular data releases are planned, at
minimum on a yearly basis, including the addition of at least 9
new datasets spanningmultiple neurodegenerative diseases and

Figure 6 Exploration and Filtration of Variant AssociationsWith Amyotrophic Lateral Sclerosis (ALS)Within the Surrounding
Region of KANK1 (chr9:370,291-846105) Using the Variant Sifter Tool

(A) Association plot of all variants identifiedwithin themeta-analyzeddatasets encompassedwithin theNeurodegenerativeDisease Knowledge Portal (NDKP)
within the surrounding region of KANK1 in reference to their meta-analyzed associations with ALS. (B) Filtration of variants to include only those in enhancer
regulatory elementwithin the CNSbasedon epigenomics data encompassedwithin theNDKP from theCommonMetabolic DiseasesGenomeAtlas (CMDGA).
(C) Filtration of variants to include only those linked to KANK1. (D) All remaining variants after application of the annotation filters using the Variant Sifter tool.
The star represents a variant of interest that has been manually selected based on its association with ALS that is approaching significance.
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diverse ancestral populations. We aim to prioritize the in-
tegration of additional “omic” datatypes, such as single-cell,
bulk RNA-seq, and proteomics analyses, in addition to in-
corporating deeply phenotyped clinical datasets as they be-
come available. As we move toward achieving this goal, we also
remain committed to the development of appropriate data
mining methods and bioinformatics tools to appropriately use
the data, which is particularly important for complex pheno-
types such as neurodegenerative diseases.54 Finally, we wel-
come new collaborations, including the opportunity to
incorporate additional data, methods, and tools into the
NDKP. Researchers are encouraged to contact the data intake
team (amp-dcc-dat@broadinstitute.org) to discuss prospective
collaborations and data deposition.

Although effort is being made to expand the portal, it is im-
portant to recognize that the NDKP currently has inherent
limitations regarding the available data. Most notably, there is
an overrepresentation of individuals of European ancestry,
largely reflecting the lack of diversity observed across the field
of genomics.55 Furthermore, most currently available datasets
represent GWAS summary statistics, which do not represent
all information from the original genotyping microarray data.
While offering potential for further discovery and replication
of common variant signals, GWAS datasets typically do not
capture rare genetic biomarkers for phenotypes of interest.

While we have provided a comprehensive overview of the vast
amount of data included in the NDKP and their possible ap-
plications, there are unlimited potential use cases. Additional
detailed potential workflows have been outlined by the Knowl-
edge Portal developers, including using the NDKP to perform
multitrait analysis, rare variant association gene-level analysis,
and integrative analysis available within the “Workflow” sub-
section of the “Help” pages. The developers have also generated
ample tutorials, webinars, and presentations to aid in NDKP use
available within the “Videos, webinars, and presentations” sub-
section of the “Help” pages. Ultimately, our goal is for available
data to be accessible and easy to use for both novel discovery and
replication purposes, promoting open science and collaboration,
and resulting in reproducible conclusions that will improve target
discovery for neurodegenerative diseases.
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